direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C22⋊C8, C23⋊2C8, C24.3C4, C22.9M4(2), C4○(C22⋊C8), (C22×C8)⋊1C2, C22⋊2(C2×C8), C4.66(C2×D4), (C2×C8)⋊10C22, (C2×C4).144D4, C2.1(C22×C8), (C23×C4).5C2, (C22×C4).11C4, C23.28(C2×C4), C2.3(C2×M4(2)), C4.31(C22⋊C4), (C2×C4).144C23, (C22×C4).91C22, C22.20(C22×C4), C22.28(C22⋊C4), (C2×C4)○(C22⋊C8), (C2×C4).55(C2×C4), C2.3(C2×C22⋊C4), SmallGroup(64,87)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C22⋊C8
G = < a,b,c,d | a2=b2=c2=d8=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >
Subgroups: 145 in 101 conjugacy classes, 57 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C2×C8, C2×C8, C22×C4, C22×C4, C22×C4, C24, C22⋊C8, C22×C8, C23×C4, C2×C22⋊C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C22⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C22⋊C8, C2×C22⋊C4, C22×C8, C2×M4(2), C2×C22⋊C8
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 30)(10 31)(11 32)(12 25)(13 26)(14 27)(15 28)(16 29)
(1 5)(2 32)(3 7)(4 26)(6 28)(8 30)(9 18)(10 14)(11 20)(12 16)(13 22)(15 24)(17 21)(19 23)(25 29)(27 31)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 25)(8 26)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29), (1,5)(2,32)(3,7)(4,26)(6,28)(8,30)(9,18)(10,14)(11,20)(12,16)(13,22)(15,24)(17,21)(19,23)(25,29)(27,31), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;
G:=Group( (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29), (1,5)(2,32)(3,7)(4,26)(6,28)(8,30)(9,18)(10,14)(11,20)(12,16)(13,22)(15,24)(17,21)(19,23)(25,29)(27,31), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,25)(8,26)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,30),(10,31),(11,32),(12,25),(13,26),(14,27),(15,28),(16,29)], [(1,5),(2,32),(3,7),(4,26),(6,28),(8,30),(9,18),(10,14),(11,20),(12,16),(13,22),(15,24),(17,21),(19,23),(25,29),(27,31)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,25),(8,26),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])
C2×C22⋊C8 is a maximal subgroup of
C23.19C42 C23.21C42 C23.8D8 C24.2Q8 C23.30D8 C24.3Q8 C23⋊C16 C23.8M4(2) C23⋊C8⋊C2 C24.(C2×C4) C24.45(C2×C4) C24.53D4 C24.59D4 C24.60D4 C24.61D4 C42.378D4 C42.379D4 C8×C22⋊C4 C23.36C42 C23.17C42 C24⋊3C8 C24.51(C2×C4) C23.35D8 C24.155D4 C24.65D4 C42.425D4 C42.95D4 C23.32M4(2) C24.53(C2×C4) C23.36D8 C24.157D4 C24.69D4 C23.21M4(2) (C2×C8).195D4 C23.37D8 C24.159D4 C24.71D4 C24.10Q8 C23.22M4(2) C23⋊2M4(2) C24.160D4 C24.73D4 C23.38D8 C24.74D4 C22⋊C4⋊4C8 C23.9M4(2) C42.325D4 C42.109D4 C23⋊2D8 C23⋊3SD16 C23⋊2Q16 C24.83D4 C24.84D4 C24.85D4 C24.86D4 C23.12D8 C24.88D4 C24.89D4 D4○(C22⋊C8) C42.262C23 D4×C2×C8 M4(2)⋊22D4 C42.691C23 C23⋊3M4(2) D4⋊7M4(2) C42.297C23 C42.298C23 C24.103D4 C24.115D4 C23⋊3D8 C23⋊4SD16 C24.121D4 C23⋊3Q16 C24.123D4 C24.124D4 D10.11M4(2)
C2×C22⋊C8 is a maximal quotient of
C42.371D4 C23.8M4(2) C42.393D4 C42.394D4 C42.455D4 C42.397D4 C42.398D4 C42.399D4 C24⋊3C8 C42.425D4 C23.32M4(2) C23.22M4(2) C42.325D4 C42.327D4 C24.5C8 (C2×D4).5C8 M5(2).19C22 M5(2)⋊12C22 D10.11M4(2)
40 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 8A | ··· | 8P |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C8 | D4 | M4(2) |
kernel | C2×C22⋊C8 | C22⋊C8 | C22×C8 | C23×C4 | C22×C4 | C24 | C23 | C2×C4 | C22 |
# reps | 1 | 4 | 2 | 1 | 6 | 2 | 16 | 4 | 4 |
Matrix representation of C2×C22⋊C8 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 8 | 16 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
9 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 9 | 2 |
0 | 0 | 10 | 8 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[1,0,0,0,0,16,0,0,0,0,1,8,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[9,0,0,0,0,16,0,0,0,0,9,10,0,0,2,8] >;
C2×C22⋊C8 in GAP, Magma, Sage, TeX
C_2\times C_2^2\rtimes C_8
% in TeX
G:=Group("C2xC2^2:C8");
// GroupNames label
G:=SmallGroup(64,87);
// by ID
G=gap.SmallGroup(64,87);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,88]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^2=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations